Optimization Design and Experimental Study of a Two-disk Rotor System Based on Multi-Island Genetic Algorithm

Author:

Huang Jingjing,Zheng Longxi,Mechefske Chris K,Han Bingbing

Abstract

Abstract Based on rotor dynamics theory, a two-disk flexible rotor system representing an aero-engine with freely supported structure was established with commercial software ANSYS. The physical model of the two-disk rotor system was then integrated to the multidisciplinary design optimization software ISIGHT and the maximum vibration amplitudes experienced by the two disks when crossing the first critical speed were optimized using a multi-island genetic algorithm (MIGA). The optimization objective was to minimize the vibration amplitudes of the two disks when crossing the first critical speed. The position of disk 1 was selected as the optimization variable. The optimum position of disk 1 was obtained at the specified constraint that the variation of the first critical speed could not exceed the range of ±10 %. In order to validate the performance of the optimization design, the proof-of-transient experiments were conducted based on a high-speed flexible two-disk rotor system. Experimental results indicated that the maximum vibration amplitude of disk 1 when crossing the first critical speed declined by 60.9 % and the maximum vibration amplitude of disk 2 fell by 63.48 % after optimization. The optimization method found the optimum rotor positions of the flexible rotor system which resulted in minimum vibration amplitudes.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Reference44 articles.

1. Gradient-based optimization of a turboprop rotor system with constraints on stresses and natural frequencies;AIAA Paper,2010–3006

2. Design and optimization method of a two-disk rotor system;Int J Turbo Jet-Eng,2015

3. Study on dynamic optimization design of the rotor system;Mach Design Manufact,2012

4. Optimization of rotor shape for constant torque improvement and radial magnetic force minimization[J];J Cent Univ,2012

5. Improved method for adjusting critical speed of rotor systems;J Aerospace Power,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3