Control of Supersonic Elliptic Jet with Ventilated Tabs

Author:

Akram Saif1,Rathakrishnan E.1

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, India

Abstract

AbstractControl of Mach 1.5 elliptic jet with ventilated triangular tabs is studied experimentally, in the presence of different levels of pressure gradient at the nozzle exit. Three different sets of ventilated tabs with circular, triangular and trapezoidal ventilations were studied. Two tabs were placed, at the ends of major and minor axes, at the exit of the elliptic nozzle of aspect ratio 3.37. The mixing enhancement caused by these tabs was studied in the presence of adverse and favorable pressure gradients, corresponding to nozzle pressure ratio (NPR) from 3 to 8. For Mach 1.5 jet NPR 3 corresponds to 18 % adverse pressure gradient and NPR 8 corresponds to 118 % favorable pressure gradient. The results of ventilated tabs are compared with unventilated truncated triangular tabs of identical geometry. The difference between the mixing promoting efficiency of the unventilated and ventilated tabs is only marginal (around 5–6 %). All tabs cause jet bifurcation and weaken the waves in the jet core. The tab with trapezoidal ventilation, at NPR 3, promotes mixing to an extent of reducing the core to about 92 %. At higher NPRs the mixing caused by unventilated tab is slightly better than the ventilated tabs.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Reference34 articles.

1. Elliptic jet control with triangular tab;J Aerosp Eng Inst Mech Eng Part G,2017

2. Effect of ‘Delta Tabs’ on mixing and axis switching in jets from asymmetric nozzles;AIAA Pap. 94-0186,1994

3. Effect of ‘Delta Tabs’ on mixing and axis switching in jets from asymmetric nozzles;AIAA Pap. 94-0186,1994

4. Truncated triangular tabs for supersonic-jet control;J Propuls Power,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3