Pre-Deformation Method for Manufactured Compressor Blade Based on Load Incremental Approach

Author:

Da Kang1,Yongliang Wang1,Jingjun Zhong1,Zihao Liu1

Affiliation:

1. Marine Engineering College, Dalian Maritime University, No.1 Linghai Road, Dalian116026, China

Abstract

AbstractThe blade deformation caused by aerodynamic and centrifugal loads during operating makes blade configurations different from their stationary shape. Based on the load incremental approach, a novel pre-deformation method for cold blade shape is provided in order to compensate blade deformation under running. Effect of nonlinear blade stiffness is considered by updating stiffness matrix in response to the variation of blade configuration when calculating deformations. The pre-deformation procedure is iterated till a converged cold blade shape is obtained. The proposed pre-deformation method is applied to a transonic compressor rotor. Effect of load conditions on blade pre-deformation is also analyzed. The results show that the pre-deformation method is easy to implement with fast convergence speed. Neither the aerodynamic load nor centrifugal load can be neglected in blade pre-deformation.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Reference36 articles.

1. Some effects of large blade deflections on aeroelastic stability;AIAA Paper No. AIAA-2009-839,2009

2. Effects of blade deformation on the performance of a high flow coefficient mixed flow impeller;ASME J Turbomach,2015

3. Untwist of rotating blades;ASME Paper No. 74-GT-2,1974

4. Investigations on static aeroelastic problems of transonic fans based on fluid-structure interaction method;Proc Inst Mech Eng Part A J Power Energ,2016

5. Dimension conversion from hot state to cold state of the turbine components;J Aerosp Power,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3