Swelling behavior of thermally modified timber from a cellular and chemical perspective

Author:

Gao Yufa12,Zhou Yongdong1,Fu Zongying1,Van Den Bulcke Jan2,Van Acker Joris2

Affiliation:

1. Research Institute of Wood Industry, Chinese Academy of Forestry , Key Lab of Wood Science and Technology of National Forestry and Grassland Administration , Beijing 100091 , China

2. UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering , Ghent University , Coupure Links 653, 9000 Ghent , Belgium

Abstract

Abstract Thermally modified timber (TMT) reduces hygroscopicity, increases dimensional stability, and decay resistance. Although there is a substantial amount of research on heat-treated wood, investigations on the sensitivity of cell wall swelling behavior to water variation are limited. Therefore, this study focused on the swelling behavior of TMT from cellular and chemical perspectives. The effects of heat treatment on the hygroscopicity and swelling behavior of the wood cell walls were studied using dynamic vapor sorption and confocal laser scanning microscopy. Changes in the chemical composition and cellulose crystallinity were studied using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction. The results revealed that the hygroscopic swelling of latewood significantly decreased with increasing treatment temperature, reducing the anisotropy of the wood cell swelling. The hygroscopicity of wood was reduced by heat treatment, and a clear decrease in hysteresis was observed at elevated treatment temperatures. The FTIR spectra indicated that both hemicellulose and lignin were degraded. The crystallinity and lateral size of the cellulose increased after heat treatment. Similar changes in the chemical composition and crystallinity of cellulose were observed in the latewood and earlywood.

Funder

Youth Program of National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3