Role of α-Fe2O3 nano-particles in protecting wood from ultraviolet light degradation

Author:

Yi Tengfei1ORCID,Morrell Jeffrey J.1

Affiliation:

1. National Centre for Timber Durability and Design Life, University of the Sunshine Coast , Sippy Downs , QLD 4556 , Australia

Abstract

Abstract The incorporation of nano-particles into coatings to protect wood against UV light has tremendous potential for improving coating performance. However, the understanding of the mechanisms by which these particles function on wood surfaces remains limited. The distribution and potential chemical interactions between alpha Fe2O3 and wood were studied. The ability of different sizes of Fe2O3 particles to intercept various wavelengths of light was assessed using ultraviolet/visible (UV–vis) spectroscopy using TiO2 and ZnO particles for comparison. All particles intercepted UV light, but α-Fe2O3 also intercepted a portion of the visible spectrum which might help explain its better performance. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDS) analysis of α-Fe2O3 nano-particle distribution on different wood orientations of radiata pine (Pinus radiata D. Don) and shining gum (Eucalyptus nitens) showed that iron particles were uniformly distributed on both pine and shining gum, but provided better UV protection to the more permeable radiata pine surfaces. Characterization of chemical interactions between α-Fe2O3 and isolated lignin and cellulose by Fourier Transform Infrared Spectroscopy (FTIR) suggested substantial interactions between these particles and lignin components, but little interaction with cellulose. The results suggest that the role of nano-particles in the UV protection of wood surface is to intercept and disperse the light energy while interacting with the wood.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3