Site quality impacts tree form, heartwood content and veneer production of plantation-grown Pinus patula

Author:

van der Merwe Jaco-Pierre12,Madiope Sechaba2,Spogter Olwethu3,Kuisis Hilton3,Potgieter Jaco4,Tait Oscar34,Clarke Charlie5,Mansfield Shawn D.16

Affiliation:

1. Department of Wood Science , University of British Columbia , Vancouver , BC V6T 1Z4 , Canada

2. Forestry Division , York Timbers , Sabie, Mpumalanga , South Africa

3. Sabie Mill , York Timbers , Sabie, Mpumalanga , South Africa

4. Plywood Division , York Timbers , Sabie, Mpumalanga , South Africa

5. CharlieC Consulting , Cheltenham , Gloucestershire , GL54 4NU , UK

6. Department of Botany , University of British Columbia , Vancouver , BC V6T 1Z4 , Canada

Abstract

Abstract Plantation forest species were introduced into South Africa due to limited availability of native forests for wood-derived products. Currently, the Mexican pine species, Pinus patula, is the most widely planted softwood species in the country. To study the effect of growth environment on wood and processing properties for the species, sample plots were established in a 20-year rotation covering a wide range of soil geologies and altitudes in Mpumalanga, South Africa. Temperature and seasonal rainfall were also determined for the sample plots. Randomly selected sample trees were harvested from the plots and processed at a plywood plant to determine veneer recovery and quality. Trees grown on sites composed of granite soils, with higher annual maximum temperatures and less rainfall, found in the Highveld region, displayed superior tree size, slenderness, and volume growth, compared to trees grown on dolomite and shale soils common to the Lowveld region. Veneer derived from Lowveld trees had more splits which were largely related to defects. Larger trees also had a greater percentage volumetric heartwood and a smaller live crown, compared to smaller trees. Highveld trees had greater net veneer recovery and produced better quality veneer than trees grown on the Lowveld. In the Mpumalanga forestry region, strong co-relatedness exists between soil geology, altitude, and climate. Although tree form and wood properties were found to differ with varying soil geology and altitude, these differences were primarily related to climate rather than soil properties. These findings highlight the pitfalls associated with neglecting either climate or soil properties when analysing site-specific growing conditions on tree growth and form.

Funder

York Timbers

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3