Highly efficient artificial magnetic conductor enabled CPW fed compact antenna for BAN wearable applications

Author:

Alam Maksud1ORCID,Khan Amber1,Mainuddin 1,Kanaujia Binod Kumar2,Beg Mirza Tariq1

Affiliation:

1. Department of Electronics and Communication Engineering , Jamia Millia Islamia Central University , New Delhi , India

2. School Computational and Integrative Sciences , Jawaharlal Nehru University , New Delhi , India

Abstract

Abstract In this paper a coplanar waveguide feed (CPW) monopole antenna backed with artificial magnetic conductor (AMC) structure for efficient radiation has been presented for off-body wearable applications. A split ring resonator (SRR) having thiner and longer lines to produce higher inductance and six splits with smaller gaps for high capacitance have been placed underneath CPW fed monopole to achieve resonance mode at a lower frequency. Higher values of inductance and capacitance produce resonant modes at relatively lower frequencies resulting in highly miniaturized antenna. The desired −10dB S11 bandwidth has been optimized firstly, by tuning/optimizing flow of surface currents with the help of several slots/slits and later by realizing AMC reflector with the help of full ground backed foam. The proposed antenna covers 2.45 GHz industrial, scientific and medical (ISM) band body area network (BAN) application and posses good front to back ratio (FBR) and thereby low and acceptable values of specific absorption rate (SAR). The proposed antenna has been designed and simulated using Ansys high frequency structured simulator and tested using vector network analyzer and anechoic chamber. The simulated and measured results well agree with each other.

Funder

Ministry of Electronics and Information technology

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3