A novel non-iterative algorithm for the joint design of transceiver beamforming and surface reflection in an IRS-enhanced MIMO system

Author:

Asgari Tabatabaee Seyyed Mohammad Javad1,Samsami Khodadad Farid2

Affiliation:

1. Department of Electrical Engineering , University of Torbat Heydarieh , Torbat Heydarieh , Iran

2. Modern Technologies Engineering Department , Amol University of Spatial of Modern Technologies , Amol , Iran

Abstract

Abstract Intelligent reflecting surface (IRS) is an emerging and low-cost revolutionary technology that can be deployed in future communication systems to enhance data transmission performance. An IRS comprises a lot of small, passive, and low-cost elements that can smartly reflect the incident signal from the transmitter to the receiver. In this paper, an IRS-enhanced multiple-input multiple-output (MIMO) downlink network is considered, in which a cell-edge user receives the data signal from a base station (BS). In this network, the direct path between the BS and the user is blocked by an obstacle, and the user receives only the tunable reflected signal from the IRS. To achieve spatial diversity, beamforming is applied to the antennas at the BS and the user. The goal is to jointly design the transceiver beamforming vectors and the IRS reflection coefficients so that the signal-to-noise ratio (SNR) of the user is maximized. Since the IRS elements are passive, the amplitude of the IRS reflection coefficients must be equal to or smaller than one. The constrained SNR optimization problem is non-convex. We propose a three-step procedure to obtain an effective sub-optimal solution for this problem. Accordingly, an innovative non-iterative algorithm is proposed to design the problem parameters. Simulation results show that the IRS-enhanced MIMO downlink system, in which the proposed non-iterative algorithm is used to develop the network parameters, outperforms the conventional network without IRS in terms of bit error rate (BER).

Funder

University of Torbat Heydarieh

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3