Design of high-efficiency Hybrid Power Amplifier with concurrent F&F−1 class operations for 5G application

Author:

Tahmasbi Meisam1,Razaghian Farhad1,Roshani Sobhan2

Affiliation:

1. Department of Electrical Engineering , South Tehran Branch, Islamic Azad University , Tehran , Iran

2. Department of Electrical Engineering , Kermanshah Branch, Islamic Azad University , Kermanshah , Iran

Abstract

Abstract This paper presents a novel structure of Hybrid Power Amplifier (HPA) to operate in two arbitrary classes of operation at two desirable frequencies. The proposed HPA is designed in concurrent F&F−1 classes, simultaneously for 5G application. Presented HPA can solve the harmonics interference problem for concurrent F and F−1 classes and also for any arbitrary class of operation in desired frequencies. The designed HPA operates at 1.5 GHz frequency in the F class mode, while operates at 2.1 GHz frequency in the F−1 class mode. A new method is presented by using two diplexers to provide two paths for signal in different frequencies. Two parallel paths are used at the output of the HPA circuit, so the proposed HPA can operate at two classes. Two diplexers are used in the HPA to make proper isolation between the designed paths. In design of the proposed HPA, according to the utilized diplexers, the amplifier can operate between two arbitrary classes of operation at desired frequencies without any specific switch. The measured drain efficiency (DE) and power added efficiency (PAE) parameters are 57 and 51%, respectively at 2.1 GHz, while measured DE and PAE are 64 and 54%, respectively at 1.5 GHz.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-efficiency class-F power amplifier based on double spiral defected ground structure;International Journal of Electronics;2023-01-04

2. Ultra-compact Photonic Crystal Based All Optical Half Adder;2021 Photonics & Electromagnetics Research Symposium (PIERS);2021-11-21

3. 3.33Tb/s All-optical AND Logic Gate Based on Two-dimensional Photonic Crystals;2021 Photonics & Electromagnetics Research Symposium (PIERS);2021-11-21

4. UWB Dual-notched Planar Antenna by Incorporating Single Compact EBG;2021 Photonics & Electromagnetics Research Symposium (PIERS);2021-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3