Design of high gain miniaturized WPT rectenna for implantable biomedical applications

Author:

Jampa Rajendra12,Sharma Dinesh2

Affiliation:

1. ECE Department , SVEC , Tadepalligudem , India

2. ECE Department , CCET (Degree Wing) , Chandigarh , India

Abstract

Abstract Implantable medical devices (IMDs) have become indispensable for treating various health disorders and monitoring individual well-being as a result of significant technical breakthroughs in the field of biomedical technology. This article describes a wireless powering technique at 2.45 GHz for low power devices such as IMDs. The design incorporates a rectangular patch antenna that exhibits peak gain of 2.1 dB and impedance bandwidth of 620 MHz with compact size of 71.4 mm3. The antenna is simulated within a three-layer phantom model replicating the human body to evaluate its performance, which produces −21.4 dB peak gain and 600 MHz–10 dB impedance bandwidth. A full wave rectifier aided by matching network is used to accomplish optimal conversion of RF signal to DC power. The constructed prototype is tested in a saline solution, and the measured results closely match the simulation results. Specific Absorption Rate (SAR) is calculated using a phantom model and a head model for assessing patient safety and biocompatibility. The proposed antenna has SAR values of 5.12 W/kg and 3.13 W/kg are exhibited by proposed antenna inside three layer phantom model and human head model.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3