A high-gain dual-beam folded transmit-reflect-array antenna based on phase-shifting surface

Author:

Zhang Min1,Tang Baiqing2,Li Xin3,Jiang Peng2,Hu Wei2,Jiang Wen2,Gao Steven4

Affiliation:

1. No. 36 Research Institute of CETC , Jiaxing , 314033 , China

2. National Key Laboratory of Antennas and Microwave Technology , Xidian University , Xi’an , 710071 , China

3. Xi’an Electronic Engineering Research Institute , Xi’an , 710048 , China

4. The Department of Electronic Engineering , The Chinese University of Hong Kong , Hong Kong , 999077 , China

Abstract

Abstract In this paper, a high-gain dual-beam folded transmit-reflect-array antenna is designed based on the shared aperture method. It consists of the top transmit-reflect-array, the bottom transmitarray, and the feed horn located at the center of the bottom transmitarray. A phase-shifting surface is proposed as the transmission unit cell capable of transmitting incident waves while providing adequate transmission phase shift. The designed transmission unit cell is improved into the transmit-reflect unit cell by adding polarization grids to realize the reflection function. The bottom transmitarray is constructed by transmission unit cells. The top transmit-reflect-array is composed of transmit-reflect unit cells and polarization grids vertical to the unit cell. The x-polarized wave transmits through the top transmit-reflect-array and forms a pencil beam in the forward direction. In addition, the y-polarized wave is reflected by the top transmit-reflect-array and transmits through the bottom transmitarray to form a pencil beam in the backward direction. The tested realized gains of the transmitted beam and reflected beam at 10 GHz are 19.87 dBi with an aperture efficiency of 48.27 % and 23.95 dBi with an aperture efficiency of 30.88 %, respectively. With its low profile and ease of manufacture, it has great prospects for navigation and radar communication.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3