Defected ground structure based compact UWB dielectric resonator antennas with enhanced bandwidth

Author:

Sahu Rasmita1,Pradhan Hrudananda1,Mangaraj Biswa Binayak1,Behera Santanu Kumar2

Affiliation:

1. Department of Electronics and Telecommunication Engineering , Veer Surendra Sai University of Technology , Burla , Sambalpur , Odisha , India

2. Department of Electronics and Communication Engineering , National Institute of Technology , Rourkela , Odisha , India

Abstract

Abstract This article introduces two new compact ultra-wide band (UWB) rectangular dielectric resonator antennas (RDRAs) with enhanced bandwidth (BW), gain, and directivity. The RDRAs are designed at 10 GHz resonant frequency. The proposed RDRAs are compactly designed using resonating dielectric material (RDM) of Alumina_96 pct (ε r = 9.4, tanδ = 0.006) with overall dimensions of 30 × 20 × 4.6 mm3. The RDMs are mounted on FR4 substrate (ε r = 4.4, tanδ = 0.02) with defected ground structure (DGS). The DGS are comprised of rectangular and circular ring slots on it. These compact DGS-RDRAs provides enhanced BW. Prototypes of the two suggested RDRAs are fabricated. The fabricated RDRAs are validated by experimental set-ups. The RDRA with rectangular-ring slot DGS provides impedance BW (S 11 < −10 dB) of 33.97 % (8.6658–12.071 GHz). The impedance BW of the other RDRA is 27.97 % (9.08–11.869 GHz). The rectangular-ring slotted RDRA offers radiation efficiency and peak realized gain of 86.4 % and 6.27 dBi, respectively within the band of operating frequencies. The radiation efficiency and realised gain of circular-ring slotted RDRA are 86.18 % and 5.9 dBi, respectively. Good agreements are achieved in between the simulated results and measured results. The results are compared with some recently developed antennas available in literature. The comparison shows that the proposed RDRAs can be suitable candidate for various X-band applications such as satellite downlinks, synthetic aperture radar, weather monitoring by military and some government organizations.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3