Convergence Analysis of An Improved Extreme Learning Machine Based on Gradient Descent Method

Author:

Yusong Liu,Zhixun Su,Bingjie Zhang,Xiaoling Gong,Zhaoyang Sang

Abstract

Abstract Extreme learning machine (ELM) is an efficient algorithm, but it requires more hidden nodes than the BP algorithms to reach the matched performance. Recently, an efficient learning algorithm, the upper-layer-solution-unaware algorithm (USUA), is proposed for the single-hidden layer feed-forward neural network. It needs less number of hidden nodes and testing time than ELM. In this paper, we mainly give the theoretical analysis for USUA. Theoretical results show that the error function monotonously decreases in the training procedure, the gradient of the error function with respect to weights tends to zero (the weak convergence), and the weight sequence goes to a fixed point (the strong convergence) when the iterations approach positive infinity. An illustrated simulation has been implemented on the MNIST database of handwritten digits which effectively verifies the theoretical results..

Publisher

Walter de Gruyter GmbH

Reference7 articles.

1. Optimization Theory and Methods Press;Yuan;Science Beijing,2001

2. Beyond regression : new tools for prediction and analysis in the behavioral thesis University;Werbos;sciences Harvard Cambridge,1974

3. Gradient - based learning applied to document recognition of the No pp;LeCun;Proceedings IEEE,1998

4. Efficient and effective algorithms for training single - hidden - layer neural networks Recognition No pp;Yu;Pattern Letters,2012

5. Extreme learning machine : theory and applications No pp;Huang;Neurocomputing,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on modern urban environment design based on gradient descent method in machine algorithm;2021 2nd International Conference on Intelligent Design (ICID);2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3