Individual Gap Measures from Generalized Zeckendorf Degompositions

Author:

Dorward Robert1,Ford Pari L.2,Fourakis Eva3,Harris Pamela E.4,Miller Steven. J.5,Palsson Eyvindur A.5,Paugh Hannah4

Affiliation:

1. Dept. of Mathematics, Oberlin College, Oberlin , USA

2. Dept. of Mathematics and Physics, Bethany College, Lindshorg , USA

3. Dept. of Mat.hematatics and Statistics, Williams College, Williamstown , MA 01207, USA

4. Dept. of Mathematical Sciences, United States Military Academy, West Point , NY 10000, USA

5. Dept. of Mathematics and Statistics, Williams College, Williamstown , MA 01207. USA

Abstract

Abstract Zeckendorf's theorem states that every positive integer can be decomposed uniquely as a sum of nonconsecutive Fibonacci numbers. The distribution of the number of summands converges to a Gaussian, and the individual measures on gajw between summands for m € [Fn,Fn+1) converge to geometric decay for almost all m as n→ ∞. While similar results are known for many other recurrences, previous work focused on proving Gaussianity for the number of summands or the average gap measure. We derive general conditions, which are easily checked, that yield geometric decay in the individual gap measures of generalized Zerkendorf decompositions attached to many linear recurrence relations.

Publisher

Walter de Gruyter GmbH

Reference17 articles.

1. ALPERT. H.: Differences of multiple Fibonacci numbers. Integers: Electronic: Journal of Combinatorial Number Theory 9 (2009). 745-749.

2. BECKWITH. O.-BOWER. A.-GAUDET. L.-INSOFT. R.-LI. S - MILLER. S. J.-TOSTESON, P.: The average gap distribution for generalized Zeckendorf decompositions. Fibonacc i Quart. 51 (2013). 13 27.

3. BOWER. A.-INSOFT. R. -LI. S.-MILLER. S. .1.-TOSTESON. P.: Distribution of gaps between summands in Generalized Zeckendorf decompositions (with an appendix on Extensions to Initial Segments with Iddo Ben-Ari). .1. Comb in. Theory Ser. A. 135 (2015). 130 160.

4. CATRAL, M.-FORD. P. HARRIS. P. E-MILLER, S. .1.- NELSON. D. - PAN. Z.-XU. H.: New behavior in legal decompositions arising from non- positive linear recurrences. 2016. https://arxiv.org/abs/1606.09309

5. DAYKIN, D. E.: Representation of natural numbers as sums of generalized Fibonacci numbers. .1. Loud. Math. Soc. 35 (I960). 143 160.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalizing Zeckendorf’s Theorem to Homogeneous Linear Recurrences, II;The Fibonacci Quarterly;2022-12

2. Generalizing Zeckendorf’s Theorem to Homogeneous Linear Recurrences, I;The Fibonacci Quarterly;2022-12

3. Bin decompositions;Involve, a Journal of Mathematics;2019-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3