Group Contribution Method-based Multi-objective Evolutionary Molecular Design

Author:

Dörgő Gyula,Abonyi János

Abstract

Abstract The search for compounds exhibiting desired physical and chemical properties is an essential, yet complex problem in the chemical, petrochemical, and pharmaceutical industries. During the formulation of this optimization-based design problem two tasks must be taken into consideration: the automated generation of feasible molecular structures and the estimation of macroscopic properties based on the resultant structures. For this structural characteristic-based property prediction task numerous methods are available. However, the inverse problem, the design of a chemical compound exhibiting a set of desired properties from a given set of fragments is not so well studied. Since in general design problems molecular structures exhibiting several and sometimes conflicting properties should be optimized, we proposed a methodology based on the modification of the multi-objective Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The originally huge chemical search space is conveniently described by the Joback estimation method. The efficiency of the algorithm was enhanced by soft and hard structural constraints, which expedite the search for feasible molecules. These constraints are related to the number of available groups (fragments), the octet rule and the validity of the branches in the molecule. These constraints are also used to introduce a special genetic operator that improves the individuals of the populations to ensure the estimation of the properties is based on only reliable structures. The applicability of the proposed method is tested on several benchmark problems.

Publisher

University of Pannonia

Subject

General Chemical Engineering,General Chemistry,Chemistry (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3