Structure and rheology of soft hybrid systems of magnetic nanoparticles in liquid-crystalline matrices: results from particle-resolved computer simulations

Author:

Siboni Nima H.1ORCID,Shrivastav Gaurav P.2,Peroukidis Stavros D.34,Klapp Sabine H. L.1

Affiliation:

1. Institut für Theoretische Physik , Technische Universität Berlin , Hardenbergstraße 36 , 10623 Berlin , Germany

2. Institute für Theoretical Physics , Technische Universität Wien , Wiedner Hauptstr. 8-10 , 1040 Vienna , Austria

3. Department of Chemical Engineering , University of Patras , 26504 Patras , Greece

4. Hellenic Open University , 26222, Patras , Greece

Abstract

Abstract Hybrid mixtures composed of magnetic nanoparticles (MNP) in liquid crystalline (LC) matrices are a fascinating class of soft materials with intriguing physical properties and a wide range of potential applications, e.g., as stimuli-responsive and adaptive materials. Already in the absence of an external stimulus, these systems can display various types of orientationally disordered and ordered phases, which are enriched by self-assembled structures formed by the MNPs. In the presence of external fields, one typically observes highly nonlinear macroscopic behavior. However, an understanding of the structure and dynamics of such systems on the particle level has, so far, remained elusive. In the present paper we review recent computer simulation studies targeting the structure, equilibrium dynamics and rheology of LC-MNP systems, in which the particle sizes of the two components are comparable. As a numerically tractable model system we consider mixtures of soft spherical or elongated particles with a permanent magnetic dipole moment and ellipsoidal non-magnetic particles interacting via a Gay-Berne potential. We address, first, equilibrium aspects such as structural organization and self-assembly (cluster formation) of the MNPs in dependence of the orientational state of the matrix, the role of the size ratio, the impact of an external magnetic field, and the translational and orientational diffusion of the two components. Second, we discuss the non-equilibrium dynamics of LC-MNP mixtures under planar shear flow, considering both, spherical and non-spherical MNPs. Our results contribute to a detailed understanding of these intriguing hybrid materials, and they may serve as a guide for future experiments.

Funder

German Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3