Affiliation:
1. Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technical University Braunschweig , Braunschweig , Germany
Abstract
Abstract
Magnetic particle imaging (MPI) is a young imaging modality for biomedical applications. It uses magnetic nanoparticles as a tracer material to produce three-dimensional images of the spatial tracer distribution in the field-of-view. Since the tracer magnetization dynamics are tied to the hydrodynamic mobility via the Brownian relaxation mechanism, MPI is also capable of mapping the local environment during the imaging process. Since the influence of viscosity or temperature on the harmonic spectrum is very complicated, we used magnetic particle spectroscopy (MPS) as an integral measurement technique to investigate the relationships. We studied MPS spectra as function of both viscosity and temperature on model particle systems. With multispectral MPS, we also developed an empirical tool for treating more complex scenarios via a calibration approach. We demonstrate that MPS/MPI are powerful methods for studying particle-matrix interactions in complex media.
Subject
General Physics and Astronomy,General Materials Science,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献