Numerical analysis of mixing performance of mixing section in pin-barrel single-screw extruder

Author:

Chen Jinnan,Dai Pan,Yao Hui,Chan Tung

Abstract

Abstract Using the finite elements method, numerical simulations of the flow field of a rubber melt in the mixing sections of a conventional full-flight single-screw extruder and a pin-barrel single-screw extruder were carried out. Particle tracking analysis was used to statistically analyze the mixing state of the rubber melt in the mixing section with pin and that without pin. The mixing performance of both types of mixing section was quantitatively evaluated. The results show that the pins partially disorganize the particle trajectories, change the particle moving directions, and enhance the mixing performance. The particle residence time is longer in the mixing section with pins than in the mixing section with no pin, leading to better mixing in the former. The distributive mixing of particles in both types of mixing section was statistically analyzed. The pins increase the efficiency of stretching and the time-averaged efficiency of stretching, and hence the mixing efficiency. However, further increase in the number of pins does not necessarily enhance the mixing performance.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3