Electrostrictive polymer composite for energy harvesters and actuators

Author:

Cottinet Pierre-Jean,Guyomar Daniel,Guiffard Benoit,Lebrun Laurent,Putson Chatchai

Abstract

Abstract Polymers have attractive properties when compared with inorganic materials: they are lightweight, inexpensive, pliable, and easily processed and manufactured. They can be configured into complex shapes and their properties can be tailored according to demand. With the rapid advances in materials used in science and technology, various substances embedded with intelligence at the molecular level are being developed. A type of electroactive polymer known as electrostrictive has shown considerable promise for a variety of applications, such as actuation with a strain thickness of 15% for an electric field of 10 V/μm. Polyurethane-based nanocomposite films were prepared by incorporating a carbon black nanopowder (C) into the polymer matrix. Electric field-induced strain measurements revealed that a loading of 1 vt% C (volume percentage of carbon black nanopowder) increased the strain level by a factor of 2.5 at a moderate field strength (10 V/μm). Moreover, another application for this material concerned the harvesting of mechanical energy, which constitutes an attractive alternative to the strict reliance on traditional batteries with limited lifetimes. For instance, an effective conversion from the mechanical-to-electric domains of 2.3 μW/cm3, under a transverse vibration level of 0.25% at 100 Hz, has been demonstrated for nylon. The final results indicated that the dielectric constant was a crucial parameter for energy harvesting.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3