Assessment of calibration methods on impedance pneumography accuracy

Author:

Młyńczak Marcel,Niewiadomski Wiktor,Żyliński Marek,Cybulski Gerard

Abstract

AbstractThe aim was to assess accuracy of tidal volumes (TV) calculated by impedance pneumography (IP), reproducibility of calibration coefficients (CC) between IP and pneumotachometry (PNT), and their relationship with body posture, breathing rate and depth. Fourteen students performed three sessions of 18 series: normal and deep breathing at 6, 10, 15 breaths/min rates, while supine, sitting and standing; 18 CC were calculated for every session. Session 2 was performed 2 months after session 1, session 3 1–3 days after session 2. TV were calculated using full or limited set of CC from current session, in case of sessions 2 and 3 also using CC from session 1 and 2, respectively. When using full set of CC from current session, IP underestimated TV by -3.2%. Using CC from session 2 for session 3 measurements caused decrease of relative difference: -3.9%, from session 1 for session 2: -5.3%; for limited set of CC: -5.0%. The body posture had significant effect on CC. The highest accuracy was obtained when all factors influencing CC were considered. The application of CC related only to body posture may result in shortening of calibration and moderate accuracy loss. Using CC from previous session compromises accuracy moderately.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3