Feasibility study of using a Microsoft Kinect for virtual coaching of wheelchair transfer techniques

Author:

Hwang Seonhong,Tsai Chung-Ying,Koontz Alicia M.

Abstract

AbstractThe purpose of this study was to test the concurrent validity and test-retest reliability of the Kinect skeleton tracking algorithm for measurement of trunk, shoulder, and elbow joint angle measurement during a wheelchair transfer task. Eight wheelchair users were recruited for this study. Joint positions were recorded simultaneously by the Kinect and Vicon motion capture systems while subjects transferred from their wheelchairs to a level bench. Shoulder, elbow, and trunk angles recorded with the Kinect system followed a similar trajectory as the angles recorded with the Vicon system with correlation coefficients that are larger than 0.71 on both sides (leading arm and trailing arm). The root mean square errors (RMSEs) ranged from 5.18 to 22.46 for the shoulder, elbow, and trunk angles. The 95% limits of agreement (LOA) for the discrepancy between the two systems exceeded the clinical significant level of 5°. For the trunk, shoulder, and elbow angles, the Kinect had very good relative reliability for the measurement of sagittal, frontal and horizontal trunk angles, as indicated by the high intraclass correlation coefficient (ICC) values (>0.90). Small standard error of the measure (SEM) values, indicating good absolute reliability, were observed for all joints except for the leading arm’s shoulder joint. Relatively large minimal detectable changes (MDCs) were observed in all joint angles. The Kinect motion tracking has promising performance levels for some upper limb joints. However, more accurate measurement of the joint angles may be required. Therefore, understanding the limitations in precision and accuracy of Kinect is imperative before utilization of Kinect.

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3