Membrane protein stability depends on the concentration of compatible solutes – a single molecule force spectroscopic study

Author:

Roychoudhury Arpita,Bieker Adeline,Häussinger Dieter,Oesterhelt Filipp

Abstract

Abstract Compatible solutes are small, uncharged, zwitter ionic, osmotically active molecules produced and accumulated by microorganisms inside their cell to counteract different kinds of environmental stress. They enhance protein stability without interfering with the metabolic pathways even at molar concentrations. In this paper, we report the stabilizing effects of compatible solutes, ectoine, betaine and taurine on membrane protein bacteriorhodopsin at different concentrations. Using atomic force microscopy based single molecule force spectroscopy the impact of the osmolytes was quantified by measuring the forces required to pull the protein out of the membrane and the change in the persistence lengths of the unfolded polypeptide chain. Increase in unfolding forces were observed, indicating the strengthening of intramolecular interactions, which are vital for protein stability. The decrease in persistence lengths was recorded and showed increasing tendencies of the polypeptide strand to coil up. Interestingly, it was revealed that these molecules have different stabilizing effects on protein unfolding at different concentrations. The results show that the unfolding of single protein provides insight to the structure-dynamic relationship between the protein and compatible solute molecules at sub-nanometer scale. This also helps to understand the molecular mechanism involved in protein stabilization by organic osmolytes.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Reference154 articles.

1. Adsorption of biological molecules to a solid support for scanning probe microscopy;Müller;Struct Biol,1997

2. Enzyme stabilization be ectoine - type compatible solutes : protection against heating freezing and drying;Lippert;Appl Microbiol Biotechnol,1992

3. Identification of betaine as an osmolyte in rat liver macrophages cells;Zhang;Gastroenterology,1996

4. a Mechanism of the stabilization of ribonuclease A by sorbitol : preferential hydration is greater for the denatured then for the native protein Protein;Xie;Sci,1997

5. Organic osmolytes as compatible metabolic and counteracting cytoprotectants in high osmolarity and other stresses;Yancey;Exp Biol,2005

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3