Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases

Author:

Moens Ugo,Kostenko Sergiy

Abstract

Abstract Mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways that control pivotal cellular processes including proliferation, differentiation, survival, apoptosis, gene regulation, and motility. MAPK pathways consist of a relay of consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinases, and MAPKs. Conventional MAPKs are characterized by a conserved Thr-X-Tyr motif in the activation loop of the kinase domain, while atypical MAPKs lack this motif and do not seem to be organized into the classical three-tiered kinase cascade. One functional group of conventional and atypical MAPK substrates consists of protein kinases known as MAPK-activated protein kinases. Eleven mammalian MAPK-activated protein kinases have been identified, and they are divided into five subgroups: the ribosomal-S6-kinases RSK1-4, the MAPK-interacting kinases MNK1 and 2, the mitogen- and stress-activated kinases MSK1 and 2, the MAPK-activated protein kinases MK2 and 3, and the MAPK-activated protein kinase MK5 (also referred to as PRAK). MK5/PRAK is the only MAPK-activated protein kinase that is a substrate for both conventional and atypical MAPK, while all other MAPKAPKs are exclusively phosphorylated by conventional MAPKs. This review focuses on the structure, activation, substrates, functions, and possible implications of MK5/PRAK in malignant and nonmalignant diseases.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Reference208 articles.

1. SUMO playing tag with ubiquitin Trends;Praefcke;Biochem Sci,2012

2. syndrome AS;Van Buggenhout;Eur Hum Genet,2009

3. and Pharmacokinetics safety and tolerability of a mitogen - activated protein kinase - activated protein kinase inhibitor given as single and multiple doses to healthy male subjects;Namour;Drugs,2012

4. Identification and proteomic analysis of distinct protein complexes;Martinez;Mol Cell Biol,2012

5. Bmi cooperates with Ras to transform human mammary epithelial cells via dysregulation of multiple growth regulatory pathways;Datta;Cancer Res,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3