Human dyskerin: beyond telomeres

Author:

Angrisani Alberto,Vicidomini Rosario,Turano Mimmo,Furia Maria

Abstract

Abstract Human dyskerin is an evolutively conserved protein that participates in diverse nuclear complexes: the H/ACA snoRNPs, that control ribosome biogenesis, RNA pseudouridylation, and stability of H/ACA snoRNAs; the scaRNPs, that control pseudouridylation of snRNAs; and the telomerase active holoenzyme, which safeguards telomere integrity. The biological importance of dyskerin is further outlined by the fact that its deficiency causes the X-linked dyskeratosis congenita disease, while its over-expression characterizes several types of cancers and has been proposed as prognostic marker. The role of dyskerin in telomere maintenance has widely been discussed, while its functions as H/ACA sno/scaRNP component has been so far mostly overlooked and represent the main goal of this review. Here we summarize how increasing evidence indicates that the snoRNA/microRNA pathways can be interlaced, and that dyskerin-dependent RNA pseudouridylation represents a flexible mechanism able to modulate RNA function in different ways, including modulation of splicing, change of mRNA coding properties, and selective regulation of IRES-dependent translation. We also propose a speculative model that suggests that the dynamics of pre-assembly and nuclear import of H/ACA RNPs are crucial regulatory steps that can be finely controlled in the cytoplasm in response to developmental, differentiative and stress stimuli.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Reference202 articles.

1. The coding / non - coding overlapping architecture of the gene encoding theDrosophilapseudouridine synthase;Riccardo;Mol Biol,2007

2. Unexplained aplastic anaemia immunodeficiency and cerebellar hypoplasia syndrome due to mutations in the dyskeratosis congenita gene;Knight,1999

3. congenita Program;Dokal;Hematology Am Soc Hematol Educ,2011

4. Tal RNP assembly at the site of transcription in human cells;Darzacq;RNA Cell Biol,2006

5. small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation;Bellodi;Cell Rep,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3