The structural biology of the amyloid precursor protein APP – a complex puzzle reveals its multi-domain architecture

Author:

Coburger Ina,Hoefgen Sandra,Than Manuel E.

Abstract

Abstract The amyloid precursor protein (APP) and its processing are widely believed to be central for the etiology of Alzheimer’s disease (AD) and appear essential for neuronal development and cell homeostasis in mammals. Many studies show the proteolysis of APP by the proteases α-, β- and γ-secretase, functional aspects of the protein and the structure of individual domains. It is, however, largely unclear and currently also widely debated of how the structures of individual domains and their interactions determine the observed functionalities of APP and how they are arranged within the three-dimensional architecture of the entire protein. Further unanswered questions relate to the physiologic function of APP, the regulation of its proteolytic processing and the structural and functional effect of its cellular trafficking and processing. In this review, we summarize our current understanding of the structure-function-relationship of the multi-domain protein APP. This type-I transmembrane protein consists of the two folded E1 and E2 segments that are connected to one another and to the single transmembrane helix by flexible segments and likely fulfills several independent functions.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Reference164 articles.

1. Production of glycosylated soluble amyloid precursor protein α sAPPα inLeishmania tarentolae;Klatt;Proteome Res,2013

2. Regulation of amyloid protein precursor binding to collagen and mapping of the binding sites on APP and collagen type;Beher;Biol Chem,1996

3. Functions of sAPPα sAPPβ similarities differences;Chasseigneaux;Neurochem,2012

4. and heterodimerization of APP family members promotes intercellular adhesion;Soba;Homo EMBO J,2005

5. The ray structure of an antiparallel dimer of the human amyloid precursor protein domain;Wang;Mol Cell,2004

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3