Application of gamma radiation and physicochemical treatment to improve the bioactive properties of chitosan extracted from shrimp shell

Author:

Aktar Jesmin1,Hasan Zahid2,Afroz Tahmina1,Harun-or-Rashid 2,Pramanik Kamruzzaman2

Affiliation:

1. Department of Zoology, Faculty of Biological Science , Jahangirnagar University , Savar, Dhaka , Bangladesh

2. Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment , Ganakbari, Savar, Dhaka , Bangladesh , Tel.: +8802 779 0033, +8801 74722 5837,

Abstract

Abstract The aim of this study is to exploit a suitable chitosan extraction method from the chitin of indigenous shrimp shells by employing different physicochemical treatments and to improve different bioactive properties of this extracted chitosan (CS) by applying gamma radiation. Chitin was prepared from shrimp shell by pretreatment (deproteination, demineralization and oxidation). Chitosan was extracted from chitin by eight different methods varying different physicochemical parameters (reagent concentration, temperature and time) and assessed with respect to the degree of deacetylation, requirement of time and reagents. The method where chitin was repeatedly treated with 121°C for 30 min with 20 M NaOH, produced the highest degree of deacetylation (DD) value (92%) as measured by potentiometric titration, with the least consumption of time and chemicals, and thus, selected as the best suitable extraction method. For further quality improvement, chitosan with highest DD value was irradiated with different doses (i.e., 5, 10, 15, 20 and 50 kGy) of gamma radiation from cobalt-60 gamma irradiator. As the radiation dose was increased, the molecular weight of the wet irradiated chitosan, as measured by the viscosimetric method, decreased from 1.16 × 105 to 1.786 × 103, 1.518 × 103, 1.134 × 103, 1.046 × 103 and 8.23 × 102 dalton, respectively. The radiation treatment of chitosan samples increased the antimicrobial activity significantly in concentration dependent manner on both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria, as determined by the well-diffusion method. Four to five percent wet chitosan treated with a radiation dose range of 5.0–10.0 kGy rendered the highest antimicrobial activity with least energy and time consumption. Solubility, water binding capacity (WBC) and fat binding capacity (FBC) also improved due to irradiation of chitosan.

Publisher

Walter de Gruyter GmbH

Subject

Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics

Reference16 articles.

1. 1. Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food application of chitin and chitosan. Trends Food Sci. Technol., 10(2), 37–51. DOI: 10.1016/S0924-2244(99)00017-5.10.1016/S0924-2244(99)00017-5

2. 2. Majeti, N. V., & Kumar, R. (2000). A review of chitin and chitosan applications. React. Funct. Polym., 46(1), 1–27. http://doi.org/10.1016/S1381-5148(00)00038-9.10.1016/S1381-5148(00)00038-9

3. 3. Fernandes, J. C., Tavaria, F. K., Soares, J. C., Ramos, Ó. S., Monteiro, M. J., Pintado, M. E., & Malcata, F. X. (2008). Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model system. Food Microbiol., 25, 922–928. DOI: 10.1016/j.fm.2008.05.003.10.1016/j.fm.2008.05.003

4. 4. Devlieghere, F., Vermeulen, J., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol., 21, 703–714. http://doi.org/10.1016/j.fm.2004.02.008.10.1016/j.fm.2004.02.008

5. 5. Rout, S. K. (2001). Physicochemical, functional and spectroscopic analysis of crawfish chitin and chitosan as affected by process modification. Dissertation (Thesis), Louisiana State University, and Agricultural and Mechanical College, Department of Food Science. http://digitalcommons.lsu.edu/gradschool_disstheses/432.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3