The Laboratory of Natural Radiation (LNR) – a place to test radon instruments under variable conditions of radon concentration and climatic variables

Author:

Santiago Quindós Poncela Luis1,Sainz Fernández Carlos1,Gutiérrez-Villanueva José-Luis1,Fuente Merino Ismael1,Celaya González Santiago1,Quindós López Luis1,Quindós López Jorge1,Fernández Lopez Enrique1,Fernández Villar Alicia1

Affiliation:

1. Radon Group, University of Cantabria, C/Cardenal Herrera Oria s/n 39011, Santander, Spain , Tel.: +34 69 672 4428

Abstract

Abstract The publication of the new European Union Basic Safety Standards represents a remarkable milestone in the field of radiological protection in terms of adding radon exposure to this framework. Therefore, the coming years will bring the need to measure radon not only in the workplaces but also in the living spaces as a direct outcome of the application of the new EU Directive. So, the importance of having reliable instruments is evident and interlaboratory exercises are becoming more and more popular. However, most of them are carried out under constant conditions of meteorological variables. We present in this paper a facility to broaden the interlaboratory comparisons further by adding the study of radon exposures under real conditions of changes in climatic parameters. In addition, the facility has the possibility to verify the response of radon monitors when the radon concentration changes several orders of magnitude in a short period of time. Our work shows some results of one of the interlaboratory exercises carried out in the premises, where the radon levels were rather homogeneous in the testing room.

Publisher

Walter de Gruyter GmbH

Subject

Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics

Reference12 articles.

1. UNSCEAR. (2000). Sources and effects of ionizing radiation. Volume I: Sources; Volume II: Effects. (E.00.IX.3 and E.00.IX.4). New York: UN.

2. Council of the European Union. (1996). Council Directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Brussels: O. J. EU.

3. Council of the European Union. (2014). Council Directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. Brussels: O. J. EU.

4. EU. (1990). Directive 90/143/EURATOM of 21 February 1990 on the protection of the public against indoor exposure to radon. Commission recommendation. EU.

5. Council of the European Union. (2013). Council Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Brussels: O. J. EU.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3