An example of the application of Mössbauer spectroscopy for determination of concentration of iron in lyophilized brain tissue
Author:
Rzepecka Patrycja1, Duda Przemysław1, Giebułtowicz Joanna2, Sochacka Małgorzata2, Friedman Andrzej3, Gałązka-Friedman Jolanta1
Affiliation:
1. Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw , Poland 2. Faculty of Pharmacy, Medical University of Warsaw, Warsaw , Poland 3. Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw , Poland
Abstract
Abstract
Mössbauer spectroscopy is not routinely used for the determination of the concentration of iron. However, as this method does not need any pre-treatment of samples before measurements, it may be of extreme importance for the assessment of iron in samples, which can then be used for further investigations. Biological samples are a good example, however, as the concentrations of iron are very low in these, it is important to exclude possible artefacts from the background spectrum related to iron present in the counter and cryostat windows. The aim of this study was to compare two methods of determination of the amounts of iron in investigated sample: one, in which the background spectrum was subtracted from the sample spectrum measured, and the other, in which the obtained non-elaborated spectrum was fitted with two doublets - a doublet for the measured sample and a doublet for the background spectrum. Three samples containing known amounts of natural iron (400, 800 and 1600 μg) and a sample of lyophilized human brain tissue obtained from globus pallidus were assessed. Both methods led to the creation of a very good calibration curve with a correlation coefficient of 0.99. Although both methods gave similar results for the concentration of iron in the sample, the subtraction of the background spectrum had a significantly lower error of the final result.
Publisher
Walter de Gruyter GmbH
Subject
Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics
Reference8 articles.
1. 1. Herr, W., & Skerra, B. (1969). Mössbauer spectroscopy applied to the classifi cation of stone meteorites. In: P. M. Millman (Ed.), Meteorite research (Vol. 12, pp. 106-122). Astrophysics and Space Series. Science Library. Dordrecht: D. Reidel Pub. Co. 2. 2. Morris, R. V., Klingelhöfer, G., Korotev, L. R., & Shelfer, T. D. (1998). Mössbauer mineralogy on the Moon: The lunar regolith. Hyperfi ne Interact., 117, 405-432. 3. 3. Bauminger, E. R., Barcikowska, M., Friedman, A., Hechel, D., & Nowik, I. (1994). Does iron play a role in Parkinson’s disease? Hyperfi ne Interact., 91, 853-856. 4. 4. Dubiel, S. M., Zabłotna-Rypień, B., Mackey, J. B., & Williams, J. M. (1999). Magnetic properties of human liver and brain ferritin. Eur. Biophys. J., 28, 263-267. 5. 5. Gerlach, M., Trautwein, A. X., Zecca, L., Youdim, M. B. H., & Riederer, P. (1995). Mössbauer spectroscopic studies of purifi ed human neuromelanin isolated from the substantia nigra. J. Neurochem., 65, 923-926.
|
|