Magnetic and structural properties of Sc(Fe1−xSix)2 Laves phases studied by Mössbauer spectroscopy and neutron diffraction

Author:

Wiertel Marek1,Surowiec Zbigniew1,Budzyński Mieczysław1,Sarzyński Jan1,Beskrovnyi Anatoly I.2

Affiliation:

1. Institute of Physics, M. Curie-Skłodowska University, 1. M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 6220, Fax: +48 81 537 6191

2. Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research, 141980 Dubna, Russia

Abstract

Abstract The aim of the presented paper is to study an influence of replacement of Fe atoms by Si atoms in quasibinary Sc(Fe1− x Si x )2 Laves phases on their structural and magnetic properties. Powder X-ray diffraction (XRD) and neutron diffraction (ND) measurements carried out at different temperatures from 4.3 K up to about 700 K revealed that samples were single phase with cubic C15 structure for Si concentration x from 0.05 to 0.20 and hexagonal C14 structure for higher concentration. The results of 57Fe Mössbauer measurements showed that the Sc(Fe1− x Si x )2 compounds with x ≤ 0.30 are ferrimagnetic at 4.3 K. At temperature 80 K in the samples with x = 0.20 and 0.30, a magnetic cluster spin-glass state has been observed, as ferrimagnetic long-range order disappears. Such picture was supported by the results of ND measurements carried out at 8 K, which confirmed the lack of long-range order for x above 0.10 and an occurrence of hyperfine field distributions in the corresponding Mössbauer spectra. At room temperature, samples with x ≥ 0.20 became paramagnetic. A substitution of Si atoms for Fe ones leads to a decreasing of mean values of hyperfine magnetic fields in samples under investigation. From the neutron diffraction pattern analysis of Sc(Fe0.90Si0.10)2Fe magnetic moment was determined as to be equal to 1.5 μB at 8 K. Combining this result with a value of hyperfine magnetic field on 57Fe probes, the hyperfine coupling constant A in Sc(Fe0.90Cu0.10)2 phases is estimated at about 11.6 T/μB at 8 K.

Publisher

Walter de Gruyter GmbH

Subject

Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3