Affiliation:
1. School of Economic, Political, and Policy Sciences, University of Texas at Dallas, USA
Abstract
Abstract
This paper describes the previously unknown statistical distribution of adjacency matrix spectra for planar graphs, also known as spatial weights matrices, in terms of the following three readily available eigenvalue properties: extremes, rank orderings, and sums of powers. This distribution is governed by at most six parameters that, once known, allow accurate approximations of eigenvalues to be computed without resorting to numerical matrix methods applied on a case-by-case basis. Parameter estimates for illustrative real-world examples are obtained using nonlinear least squares regression techniques. Three conjectures are proposed, and graphical and trend results are reported for a diverse set of planar graph-based matrices.
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献