Stochastic and deterministic kinetic energy backscatter parameterizations for simulation of the two-dimensional turbulence

Author:

Perezhogin Pavel A.,Glazunov Andrey V.,Gritsun Andrey S.

Abstract

Abstract The problem of modelling 2D isotropic turbulence in a periodic rectangular domain excited by the forcing pattern of prescribed spatial scale is considered. This setting could be viewed as the simplest analogue of the large scale quasi-2D circulation of the ocean and the atmosphere. Since the direct numerical simulation (DNS) of this problem is usually not possible due to the high computational costs we explore several possibilities to construct coarse approximation models and corresponding subgrid closures (deterministic or stochastic). The necessity of subgrid closures is especially important when the forcing scale is close to the cutoff scale of the coarse model that leads to the significant weakening of the inverse energy cascade and large scale component of the system dynamics. The construction of closures is based on the a priori analysis of the DNS solution and takes into account the form of a spatial approximation scheme used in a particular coarse model. We show that the statistics of a coarse model could be significantly improved provided a proper combination of deterministic and stochastic closures is used. As a result we are able to restore the shape of the energy spectra of the model. In addition the lagged auto correlations of the model solution as well as its sensitivity to external perturbations fit the characteristics of the DNS model much better.

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,Numerical Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research in Dynamic Meteorology in Russia in 2019–2022;Izvestiya, Atmospheric and Oceanic Physics;2023-12

2. Research in Dynamic Meteorology in Russia in 2019–2022;Известия Российской академии наук. Физика атмосферы и океана;2023-12-01

3. Learning physics-constrained subgrid-scale closures in the small-data regime for stable and accurate LES;Physica D: Nonlinear Phenomena;2023-01

4. Mathematical modeling of phytoplankton populations evolution in the Azov Sea;Journal of Physics: Conference Series;2021-02-01

5. Testing of kinetic energy backscatter parameterizations in the NEMO ocean model;Russian Journal of Numerical Analysis and Mathematical Modelling;2020-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3