Mathematical modelling of classical Graetz–Nusselt problem for axisymmetric tube and flat channel using the Carreau fluid model: a numerical benchmark study

Author:

Saeed Khan Muhammad Waris1,Ali Nasir1,Asghar Zeeshan2

Affiliation:

1. Department of Mathematics and Statistics , International Islamic University , Islamabad 44000 , Pakistan

2. NUTECH School of Applied Sciences and Humanities , National University of Technology , Islamabad 44000 , Pakistan

Abstract

Abstract The thermal entrance problem (also known as the classical Graetz problem) is studied for the complex rheological Carreau fluid model. The solution of two-dimensional energy equation in the form of an infinite series is obtained by employing the separation of variables method. The ensuing eigenvalue problem (S–L problem) is solved for eigenvalues and corresponding eigenfunctions through MATLAB routine bvp5c. Numerical integration via Simpson’s rule is carried out to compute the coefficient of series solution. Current problem is also tackled by an alternative approach where numerical solution of eigenvalue problem is evaluated via the Runge–Kutta fourth order method. This problem is solved for both flat and circular confinements with two types of boundary conditions: (i) constant wall temperature and (ii) prescribed wall heat flux. The obtained results of both local and mean Nusselt numbers, fully developed temperature profile and average temperature are discussed for different values of Weissenberg number and power-law index through graphs and tables. This study is valid for typical range of Weissenberg number W e 1 $\left(We\le 1\right)$ and power-law index n < 1 $\left(n{< }1\right)$ for shear-thinning trend while n > 1 $\left(n{ >}1\right)$ for shear-thickening behaviour. The scope of the present study is broad in the context that the solution of the said problem is achieved by using two different approaches namely, the traditional Graetz approach and the solution procedure documented in M. D. Mikhailov and M. N. Ozisik, Unified Analysis and Solutions of Heat and Mass Diffusion, New York, Dover, 1994.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Reference34 articles.

1. R. B. Bird, R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids Fluid Mechanics, vol. 1, New York, John Wiley, 1987.

2. B. Šiška, H. Bendová, and I. MacHač, “Terminal velocity of non-spherical particles falling through a Carreau model Fluid,” Chem. Eng. Process, vol. 44, no. 12, pp. 1312–1319, 2005.

3. Y. H. Hyun, S. T. Lim, H. J. Choi, and M. S. John, “Rheology of poly (ethyleneoxide)/organoclay nanocomposites,” Macromolecules, vol. 34, no. 23, pp. 8084–8093, 2001. https://doi.org/10.1021/ma002191w.

4. L. Graetz, “Uber die Warmeleitungsfahigheit von Flus-singkeiten, part 1,” Ann. Phys. Chem., vol. 18, pp. 79–94, 1883, part 2, 25, 337–357 (1885).

5. J. R. Sellars, M. Tribus, and J. S. Klein, “Heat transfer to laminar flow in a round tube or flat conduit the Graetz problem extended,” Trans. ASME, vol. 78, pp. 441–448, 1956.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3