Anomalous skin effects and energy transfer of R-L waves in relativistic partially degenerate plasma

Author:

Noureen Syeda1ORCID

Affiliation:

1. Department of Physics , Government College University , Katchery Road , Lahore , 54000 , Pakistan

Abstract

Abstract On utilizing the kinetic model for transverse permittivity in a weakly magnetized electron plasma, the two particular phenomena of wave-particle interaction i.e., anomalous skin depth and energy transfer are examined in circularly polarized R- and L-waves within relativistic Fermi–Dirac distributed plasmas. Further, the non-trivial influential roles by some salient parameters i.e., relativistic thermal T m 0 c 2 > 0 $\left(\frac{T}{{m}_{0}{c}^{2}} > 0\right)$ , γ (from bulk flow such that γ > 1), degeneracy (due to μ T $\frac{\mu }{T}$ ) and weak ambient magnetic field (B 0), on above mentioned wave phenomena, are also analyzed. The derived results, in the form of polylog function, delineate the inverse relation between spatial damping and energy flux transportation regarding the variation in above mentioned dominant parameters. It is noticed that the relativistic thermal parameter serve as a penetration depth elevator for R- and L-waves and so they transfer energy slowly, whereas the degeneracy and relativistic γ parameters submerse the depth and cause upraise in energy transfer. Moreover, the increase in weak ambient magnetic field reduces the penetration depth of R-wave that delivers its energy rapidly, whereas it enlarges the penetration depth of L-wave which causes slow delivery of its energy. The results discussed (both analytically and graphically) are justifiably confirmed with previous illustrative reports. Applicability of the analysis relevant in partially degenerate regions both in space (e.g., in white dwarfs and young brown dwarf) and laboratory (e.g., in laser plasma interaction, liquid metals, inertial confinement fusion (ICF) and Fermi gas of metals) plasmas.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3