The first-order phase transition of melting for molecular crystals by Frost–Kalkwarf vapor- and sublimation-pressure equations

Author:

Matsumoto Akira1

Affiliation:

1. Department of Molecular Sciences, Faculty of Science , Osaka Prefecture University , Gakuencho 1-1, Nakaku , Sakai Osaka , 599-8531 , Japan

Abstract

Abstract Thermodynamic quantities in the coexistence of the liquid and the solid phases for Frost–Kalkwarf vapor- and sublimation-pressure equations are investigated at an isobaric process. Gibbs free energy changes in the gaseous and the liquid phases, ΔG GL, has been derived from the Frost–Kalkwarf vapor-pressure equation. Similarly, Gibbs free energy changes in the gaseous and the solid phases, ΔG GS, may be estimated by the Frost–Kalkwarf sublimation-pressure equations which are determined by data of sublimation pressures and temperatures for 24 substances. In coexistence between the liquid and the solid phases, Gibbs free energy changes in the liquid and the solid phases, ΔG LS, may be expressed as the difference of ΔG GL and ΔG GS. The melting temperatures and enthalpy changes of melting are evaluated by numerical calculations for 24 substances. The behaviors of H2O for the neighborhood at the melting and the boiling points are investigated. The Gibbs free energy indicates two polygonal lines. Entropy, volume and enthalpy jump from the solid to the liquid phase at the melting point and from the liquid to the gaseous phase at the boiling point. The heat capacity does not diverge to infinity but shows a finite discrepancy at the melting and the boiling points. This suggests that first-order phase transitions at the melting and the boiling points may occur.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3