Processing and properties of high-purity micro-lamellate (NH4)2RuCl6 particles

Author:

Xin Zena,Zhao Panchao,Chen Jialin,Ma Yaohong,Xu Ying,Cui Hao,Yi Wei

Abstract

Abstract(NH4)2RuCl6is an important precursor in the synthesis of Ru powder with high-purity requirement. In this study, high-purity (>99.999 wt%) micro-sized (NH4)2RuCl6pieces were synthesized by distillation and precipitation from crude Ru powder. Then, the thermal decomposition behavior of the (NH4)2RuCl6pieces was investigated. The decomposition process included two stages. First, (NH4)2RuCl6was decomposed from 255.0°C to 314.0°C, with the endothermic peak located at 309.4°C. At this stage, HCl and NH3were released, while the dense micro-pieces were transformed to loosened micro-pieces due to the thermal decomposition. Then, the solid phase [(NH3)4Ru3Cl12] kept decomposing from 314.0°C to 352.7°C, HCl and N2were released, and agglomerated Ru particles were achieved. Thermogravimetric analysis-differential thermal analysis-mass spectrum coupling (TG-DTA-MS) was used to monitor the thermal decomposition process and identify the released gaseous phases, respectively. The solid phases in different stages were characterized by high-temperature X-ray diffraction (HTXRD). A good understanding of the processing and thermal decomposition of (NH4)2RuCl6is crucial in the creation of Ru products.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3