Thermal forming of chemically modified wood to make high-performance plastic-like wood composites

Author:

Timar Maria Cristina,Maher Kevin,Irle Mark,Mihai Maria Daniela

Abstract

Abstract Chemically modified wood composites were obtained via the compression moulding of thermoplasticised Aspen (Populus tremula) sawdust. This sawdust was previously prepared by esterification with maleic anhydride (MA) and subsequent oligoesterification with maleic anhydride and glycidyl methacrylate (GMA). The thermoplastic properties of the chemically modified wood resulting from different modification procedures were confirmed and compared by compression-moulding experiments leading to preliminary and final products. An SEM study of the resulting products clearly showed that the oligoesterified wood had partially melted under pressure and temperature, such that the overlapping and surface melting of particles ensured adhesive bonding between those particles. A new type of wood/thermoplastic-wood composite was obtained. In these composites, the melted part of the modified wood plays the role of the cohesive matrix whilst none-melted wood remains as a fibrous reinforcing material. FTIR spectra suggested that changes in the chemical structure of the modified wood are possible during the thermal forming process (e.g. polymerisation of C=C double bonds). The final composites were yellowish-brown, glossy, plastic-like products that showed interesting physical, mechanical and biological properties. They are water-resistant and dimensionally stable and display good electrical insulating behaviour. Their mechanical properties (bending strength of ca. 64 MPa and tensile strength of ca. 36 MPa) are in the typical range for plastics and conventional wood-fibre/plastic composites, and are superior to common wood products such as fibreboards and particleboards. Furthermore, the outstandingly high internal bond (ca. 3.0 MPa) highlights the totally different adhesion mechanism operating in these new types of composites. Although the novel composites are much more resistant to decay than the original unmodified wood, they remain ultimately biodegradable plastic-like composites.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3