Author:
Sartori Jürgen,Potthast Antje,Rosenau Thomas,Hofinger Andreas,Sixta Herbert,Kosma Paul
Abstract
Abstract
To address the chemical behavior of beech xylan (O-acetyl-4-O-methyl-glucuronoxylan) under alkaline conditions, three model compounds, 2-O-methylxylobiose (1), aldobiouronic acid (4-O-methyl-α-D-glucopyranosyluronic acid-(1→2)-xylose, 2), and aldotriouronic acid (4-Omethyl-α-D-glucopyranosyluronic acid-(1→2)-β-D-xylopyranosyl-(1→4)-D-xylose, 3), were subjected to strong alkaline conditions equal to those used for the industrial production of viscose (18% NaOH, 43°C). Kinetics of the degradation of the model compounds were monitored by capillary electrophoresis in combination with pre-column derivatization. It was demonstrated that substitution at O-2 of the reducing xylose unit strongly retarded the alkaline degradation reactions (1 and 2). By isotopic labeling experiments and isolation of degradation products it was shown that under the pertinent conditions deprotonation at C-2 occurs, followed by epimerization to the respective lyxo derivative. Aldotriouronic acid 3 was degraded to 2 as an intermediate according to classical peeling pathways. Genuine degradation reactions and epimerization processes were distinguished.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献