Polymorphisms in DNA repair genes: link with biomarkers of the CBMN cytome assay in hospital workers chronically exposed to low doses of ionising radiation / Polimorfizmi u genima za popravak DNA: poveznica s biomarkerima mikronukleus-testa u medicinskih radnika kronično izloženih niskim dozama ionizirajućeg zračenja

Author:

Milić Mirta12,Rozgaj Ružica1,Kašuba Vilena1,Jazbec Ana-Marija3,Starčević Boris4,Lyzbicki Barnaba2,Ravegnini Gloria2,Zenesini Corrado5,Musti Muriel5,Hrelia Patrizia2,Angelini Sabrina2

Affiliation:

1. Institute for Medical Research and Occupational Health

2. Department of Pharmacy and Biotechnology, University of Bologna, Italy

3. Faculty of Forestry, University of Zagreb, Croatia

4. University Hospital Dubrava, Department of invasive cardiology, Zagreb, Croatia,

5. Department of Public Health, Epidemiological Service, Local Health Authority of Bologna, Italy

Abstract

Abstract Individual sensitivity to ionising radiation (IR) is the result of interaction between exposure, DNA damage, and its repair, which is why polymorphisms in DNA repair genes could play an important role. We examined the association between DNA damage, expressed as micronuclei (MNi), nuclear buds (NBs), and nucleoplasmic bridges (NPBs) and single nucleotide polymorphisms in selected DNA repair genes (APE1, hOGG1, XRCC1, XRCC3, XPD, PARP1, MGMT genes; representative of the different DNA repair pathways operating in mammals) in 77 hospital workers chronically exposed to low doses of IR, and 70 matched controls. A significantly higher MNi frequency was found in the exposed group (16.2±10.4 vs. 11.5±9.4; P=0.003) and the effect appeared to be independent from the principal confounding factor. Exposed individuals with hOGG1, XRCC1, PARP1, and MGMT wild-type alleles or APEX1, as well as XPD (rs13181) heterozygous showed a significantly higher MNi frequency than controls with the same genotypes. Genetic polymorphism analysis and cytogenetic dosimetry have proven to be a powerful tool complementary to physical dosimetry in regular health surveillance programmes.

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3