Dissipation dynamics of terbuthylazine in soil during the maize growing season

Author:

Stipičević Sanja1,Mendaš Gordana2,Dvoršćak Marija1,Fingler Sanja1,Galzina Natalija3,Barić Klara3

Affiliation:

1. Institute for Medical Research and Occupational Health, Zagreb , Croatia

2. Research and Occupational Health, Ksaverska cesta 2, HR-10001 Zagreb , Croatia

3. Faculty of Agriculture, University of Zagreb, Zagreb , Croatia

Abstract

Abstract Ever since terbuthylazine (TBA) replaced atrazine in herbicide crop treatment, its much greater persistence has raised considerable environmental concern. The aim of our field experiment was to establish the dissipation dynamics of TBA and its degradation product desethylterbuthylazine (DET) in soil over five months of maize growth. We applied TBA as part of pre-emergent treatment in the regular and double-the-regular amounts. Soil samples were collected periodically at the following depths: 0-10 cm, 10-20 cm, 20-30 cm, and 30-50 cm. For TBA and DET soil residue analysis we used microwave-assisted extraction with methanol, followed by HPLC-UV/DAD. Regardless of the application rate, more than 80 % of the applied TBA dissipated from the first 50 cm of soil in the two months after herbicide application and 120 mm of rainfall. Three months later (at maize harvest), less than 4 % of total TBA remained in the soil, mostly in the top 20 cm rich with organic carbon on which TBA is likelier to adsorb. The loss of TBA from soil coincided with the rise in DET, especially the top soil layers, during the periods of low rainfall and highest soil temperatures. This points to biodegradation as the main route of TBA dissipation in humic soils. The applied amount had no significant effect on TBA dissipation in the top (humic) layers, but in the layers with less than 1 % of organic carbon, it was higher when the doublethe- regular dose was applied.

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3