Absorption and Picosecond Fluorescence Characteristics of Chlorophyll Vesicles as a Function o f Temperature

Author:

Brody Seymour Steven1

Affiliation:

1. Department of Biology, New York University, Washington Square, N.Y., N.Y., 10003

Abstract

Abstract With chlorophyll a-dipalmitoylphosphatidylcholine-liposomes, the absorption increases at 706 and 450 nm, and decreases at 660 and 420 nm, as the temperature is lowered. As the temperature is increased opposite changes are observed. A lipid phase change occurs at 34°. The pigment to lipid ratio is 1 to 5 in the liposome. With chlorophyll a-soy bean lecithin-liposomes the absorption increases at 706, 680 and 440 nm, and decreases at 650 and 430 nm, as the temperature is lowered. As the temperature is increased, opposite changes are observed. A lipid phase change occurs at 26-27 °C. The pigment to lipid ratio is 1 to 13. The spectral change at 706 nm is identified with aggregated chlorophyll. The concentration of chlorophyll aggregate increases as the temperature is lowered, and decreases as the temperature is raised. Fluorescence decay from chlorophyll a-soy bean lecithin-liposomes is biphasic. The lifetimes of freshly prepared liposomes are 121 ± 4 ps and 1400 ± 200 ps. The relative contribution of the fast and slow fluorescence components are modified by temperature. Heating results in an increase in both lifetimes, and an increase in fluorescence from the long lived component. These changes are interpreted as resulting from a decrease in energy transfer and concentration quenching. The origin of the biphasic fluorescence and spectral transformations in liposomes, and the possible relation between in vitro and in vivo picosecond fluorescence is discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3