Affiliation:
1. Botanisches Institut, Universität Karlsruhe, Kaiserstraße 12, D-7500 Karlsruhe 1, Bundesrepublik Deutschland
Abstract
Abstract
Adaptation In saturating light radish seedlings grown in high-light growth conditions (90 W · m-2) possess a much higher photosynthetic capacity on a chlorophyll and leaf area basis than the low-light grown plants (10 W · m-2). The higher CO2-fixation rate of HL-plants is due to the presence of HL-chloroplasts which possess a different ultrastructure and also different levels of the individual chlorophyll-carotenoid-proteins than the LL-chloroplasts of LL-seedlings.
1. Ultrastructure: The high-light adapted chloroplasts are characterized by fewer photo synthetic membranes per chloroplast section, by low grana stacks (only few thylakoids per granum), a lower stacking degree of thylakoids, a higher proportion of non-appressed membranes (stroma thylakoids + end grana membranes) and a high starch content. The LL-chloroplasts possess no starch, their grana stacks are higher (up to 17 thylakoids per granum) and also significantly broader than that of HL-chloroplasts.
2. Chlorophyll-proteins: The photosynthetic apparatus of HL-chloroplasts contains a larger proportion of chlorophyll a-proteins of photosystem I (CPIa + CPI) and of photosystem II (CPa, the presumable reaction center of PS II) than the LL-chloroplasts which possess a higher proportion of light-harvesting chlorophyll a/b-proteins (LHCP1, LHCP2, LHCP3, LHCPy). The higher levels of LHCPs in LL-plants are associated with a higher ground fluorescence fo and maximum fluorescence fp of the in vivo chlorophyll.
3. Chlorophyll and carotenoid ratios: The chloroplasts of HL-plants possess a higher proportion of chlorophyll a and β-carotene (higher values for the ratios chlorophyll a /b and lower values for a/c and x/c) which reflect the increased level of the chlorophyll a/β-carotene-proteins CPIa, CPI and CPa. The higher level of light-harvesting chlorophyll a/b-xanthophyll-proteins (LHCPs) in LL-plants is also indicated by an increased content of xanthophylls and chlorophyll b as seen from lower a/b and higher x/c and a/c ratios.
4. The results indicate that plants possess the capacity for an ontogenetic adaptation of their photosynthetic apparatus to the incident light intensity. The HL-chloroplasts of HL-plants which contain less antenna chlorophyll, are adapted for a more efficient photosynthetic quantum conversion at light saturation than the LL-chloroplasts with high grana stacks. The correlation between higher levels of light-harvesting chlorophyll a/b-proteins (LHCPs) and a higher stacking degree of thylakoids, and the involvement of LHCPs in stacking is discussed.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
133 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献