Nominal constructions in spoken academic Englishes: A quantitative corpus-based approach

Author:

Stefanowitsch Anatol1,Middeke Kirsten2,Lin Fuying3

Affiliation:

1. Freie Universität Berlin, Interdisziplinäres Zentrum Europäische Sprachen , Habelschwerdter Allee 45 , Berlin , Germany

2. Institut für Englische Philologie, Freie Universität Berlin , Habelschwerdter Allee 45 , Berlin , Germany

3. Independent scholar , Habelschwerdter Allee 45 , Berlin , Germany

Abstract

Abstract Academic English was traditionally treated as a monolithic register with respect to grammar, but recent research has shown that there is considerable variation across modes, dialects, research traditions and disciplines. We apply two quantitative corpus-linguistic methods (keyword analysis and a variant using PoS-grams instead of words) to investigate noun-noun and adjective-noun sequences in two discipline-specific Academic Englishes, that of the Arts and Humanities and that of the Physical Sciences. We show that the function of the various constructions underlying these sequences are exploited in different ways in these discipline clusters, in accordance with specific communicative needs. In the Physical Sciences, there is a need for standardized terminology. Noun-noun compounds are the preferred strategy for creating this terminology, with a specific adjective-noun construction involving relational adjectives playing a minor part and syntactic adjective-noun constituents playing no particular role. In the Arts and Humanities, there is a need for precise ad-hoc descriptions, and syntactic adjective-noun constituents are the preferred way of doing so. This difference accounts for the previously observed distribution, confirmed in our study, that noun-noun sequences are more typical for the natural sciences and adjective-noun sequences are more typical for the humanities.

Publisher

Walter de Gruyter GmbH

Reference42 articles.

1. Adams, Valerie. 2001. Complex words in English. London: Longman.

2. Banks, David. 2008. The development of scientific writing: Linguistic features and historical context. London: Equinox.

3. Baroni, Marco & Stefan Evert. 2006. The zipfR package for lexical statistics: A tutorial introduction. https://zipfr.r-forge.r-project.org/materials/zipfr-tutorial.pdf

4. Baroni, Marco & Stefan Evert. 2009. Statistical methods for corpus exploitation. In Anke Lüdeling & Merja Kytö (ed.), Corpus linguistics. An international handbook (Vol. 2), 777–803. Berlin: de Gruyter Mouton.

5. Basturkmen, Helen. 2021. Linguistic description in English for academic purposes. London: Routledge.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3