Affiliation:
1. Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , 14155-6453 Tehran , Iran (Islamic Republic of)
2. Department of Animal Sciences, Faculty of Agriculture , University of Zanjan , 38791-45371 Zanjan , Iran (Islamic Republic of)
3. Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch , Islamic Azad University , Tehran , Iran (Islamic Republic of)
Abstract
Abstract
Evidence from animal studies suggests that endogenous nitric oxide and dopamine (DA) have a regulatory role in the rewarding system, but their interaction(s) have not been studied in avian species. In this study, 4 experiments were performed to determine the effects of central administration of L-arginine (nitric oxide precursor; 200 nmol), NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor; 100 nmol), amphetamine (an indirect DA agonist; 125 pmol) and DA (40 pmol) on feeding behavior in neonatal layer-type chickens (each experiment included 4 groups, n=12 birds in each group). Prior to the initiation of the treatments, birds were fasted for 3 hours (FD3). In experiment 1, chickens received intracerebroventricular (ICV) injection of saline, L-NAME (100 nmol), amphetamine (125 pmol), and combination of L-NAME + amphetamine. In experiment 2, chickens received the ICV injection of saline, L-arginine (200 nmol), amphetamine (125 pmol) and their combination. In experiment 3, chickens received ICV injection of saline, L-arginine (200 nmol), DA (40 pmol) and L-arginine + DA. In experiment 4, chickens received ICV injection of saline, L-NAME (100 nmol), DA (40 pmol) and L-NAME + DA. Thereafter, the cumulative food intake (on the basis of metabolic body weight) was recorded until 2-h post injection. The results showed that ICV injection of amphetamine or DA significantly decreased food intake (P<0.05). Also, co-administration of L-NAME + amphetamine attenuated the hypophagic effect of amphetamine (P<0.05), while combined administration of L-NAME and DA had no effect on DA-induced hypophagia. Additionally, the hypophagic effect of amphetamine was significantly amplified by L-arginine (P<0.05), but the combination of L-arginine and DA did not alter feeding behavior which was induced by DA. These results suggest an interaction between DAergic and nitrergic systems via a presynaptic mechanism on food intake regulation in layer-type chicken.
Reference61 articles.
1. Alimohammadi S., Zendehdel M., Babapour V. (2015). Modulation of opioid-induced feeding behavior by endogenous nitric oxide in neonatal layer-type chicks. Vet. Res. Commun., 39: 105–113.
2. Alizadeh A., Zendehdel M., Babapour V., Charkhkar S., Hassanpour S. (2015). Role of cannabinoidergic system on food intake in neonatal layer-type chicken. Vet. Res. Commun., 39: 151–157.
3. Antunes F., Nunes C., Laranjinha J., Cadenas E. (2005). Redox interactions of nitric oxide with dopamine and its derivatives. Toxicology, 208: 207–212.
4. Blevins J.E., Stanley B.G., Reidelberger R.D. (2002). DMSO as a vehicle for central injections: tests with feeding elicited by norepinephrine injected into the paraventricular nucleus. Pharmacol. Biochem. Behav., 71: 277–282.
5. Boswell T. (2005). Regulation of energy balance in birds by the neuroendocrine hypothalamus. J. Poultry Sci., 42: 161–181.10.2141/jpsa.42.161
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献