Studien über die uv-induzierte Mutabilität des Serratia-Phagen KAPPA durch Versuche mit uv-bestrahltem Indikator und Phagenkreuzungen

Author:

Winkler Ulrich1

Affiliation:

1. Aus dem California Institute of Technology, Division of Biology, Pasadena/Calif.

Abstract

UV inactivated KAPPA can be reactivated like other temperate phages by plating on uvirradiated host cells (indicator). The capacity of the indicator Serratia HY for multiplication of unirradiated KAPPA was about 0.1% survivors (colony formers). The induction of clear plaque (c·) mutants by irradiating extracellular KAPPA and plating on untreated indicator can be increased further about 2 to 4 times by using UV irradiated indicator. The increase of the number of c mutants under the latter conditions, with increasing UV dose given to the phage, was never a firstorder reaction. The highest frequency of c mutants obtained was about 4.5 per cent. Plating of unirradiated KAPPA on irradiated indicator (lowest survival fraction was 0.01%) never increased the spontaneous mutation rate to c. Two c mutants studied in detail belong to two different cistrons as shown in a complementation test (map distance about 5.3%). Only one of both was revertible to the phenotype c+ spontaneously and with a higher rate by UV. However, as shown in crossing experiments with the wild type, the backmutants do not have the original genotype but originated from mutations in at least two different intragenic suppressor loci; the map distances between them and the original c mutation were 0.64% and 0.13 per cent. Host range (h) and virulent (v) mutants could not be induced by irradiation of the free phage and plating on untreated indicator. This indicates that the UV induced high mutability of the c loci in KAPPA represents an exceptional case of behavior (UV-hot spot). Some unstable h mutants could be isolated by plating irradiated phage on irradiated indicator.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3