Phase Studies and Efficient Recovery of Inorganic Metal Salts from the Microemulsion System Using a Sugar-Based Non-Ionic Surfactant

Author:

Solanki Shehnaz H.1,Patil Sandeep R.2

Affiliation:

1. School of Science, Navrachana University , Vadodara - , India

2. School of Engineering and Technology, Navrachana University , Vadodara - , India

Abstract

Abstract In the present work, the phase behaviour of the microemulsion system formulated by using water, organic solvent, and a sugar-based non-ionic surfactant was investigated in detail. We have used a sugar-based non-ionic surfactant for formulation of microemulsion, as it is a greener alternative for the formulation of a microemulsion system, owing to the following aspects: a) better physicochemical properties as compared to that of the conventional non-ionic surfactants, b) non-toxicity, and c) biodegradability. The extraction of heavy metal ions from the metal complexes as well as the recovery efficiency of heavy metal ions using a microemulsion system has been investigated. The maximum absorbance values of metal ions, after recovery from the metal complexes, were measured. Moreover, the UV-Visible spectrophotometric studies revealed that the absorbance increases with an increase in metal ion concentration in the aqueous phase while its value decreases with an increase in the concentration of potassium thiocyanate in the aqueous phase after the extraction of the metal ions from the metal complexes. Furthermore, it has also been evaluated that 4.0 mol/L potassium thiocyanate is the optimum concentration required for efficient recovery of 0.05 mol/L cobalt ion as well as nickel ions. The recovery efficiency of cobalt ions was found to be 97%, whereas that of nickel ions was determined to be 94% respectively. In addition to being an environmentally friendly approach, the present work is an economically viable option too, as it deals with the studies related to the extraction and efficient recovery of metal ions.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3