Affiliation:
1. Institute of Modern Physics, Normal College, Ningbo University, Ningbo 315211, P. R. China; International Centre for Theoretical Physics, P. O. Box 586, 34100 Trieste, Italy
Abstract
Abstract
To study a nonlinear partial differential equation (PDE), the Painleve expansion developed by Weiss, Tabor and Carnevale (WTC) is one of the most powerful methods. In this paper, using any singular manifold, the expansion series in the usual Painleve analysis is shown to be resummable in some different ways. A simple nonstandard truncated expansion with a quite universal reduction function is used for many nonlinear integrable and nonintegrable PDEs such as the Burgers, Korteweg de-Vries (KdV), Kadomtsev-Petviashvli (KP), Caudrey-Dodd-Gibbon-Sawada-Kortera (CDGSK), Nonlinear Schrödinger (NLS), Davey-Stewartson (DS), Broer-Kaup (BK), KdV-Burgers (KdVB), λf4 , sine-Gordon (sG) etc.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献