Speaker Model Clustering to Construct Background Models for Speaker Verification

Author:

Dişken Gökay,Tüfekci Zekeriya,Çevik Ulus

Abstract

Abstract Conventional speaker recognition systems use the Universal Background Model (UBM) as an imposter for all speakers. In this paper, speaker models are clustered to obtain better imposter model representations for speaker verification purpose. First, a UBM is trained, and speaker models are adapted from the UBM. Then, the k-means algorithm with the Euclidean distance measure is applied to the speaker models. The speakers are divided into two, three, four, and five clusters. The resulting cluster centers are used as background models of their respective speakers. Experiments showed that the proposed method consistently produced lower Equal Error Rates (EER) than the conventional UBM approach for 3, 10, and 30 seconds long test utterances, and also for channel mismatch conditions. The proposed method is also compared with the i-vector approach. The three-cluster model achieved the best performance with a 12.4% relative EER reduction in average, compared to the i-vector method. Statistical significance of the results are also given.

Publisher

Walter de Gruyter GmbH

Subject

Acoustics and Ultrasonics

Reference20 articles.

1. Reducing Speaker Model Search Space in Speaker Identification;De Leon;Biometrics Symposium USA,2007

2. Rod - man Joint frame and Gaus - sian selection for text independent speaker verification IEEE International Conference on Acoustics Speech and Signal Processing;Saeidi;USA,2010

3. Deep Neural Network Approaches to Speaker and Lan - guage Recognition Processing;Richardson;IEEE Signal Letters,2015

4. Speaker Verification With Feature - Space MAPLR Parameters;Zhu;IEEE Trans Audio Speech Processing,2011

5. An Effective Speaker Clustering Method using UBM and Ultra - Short Train - ing Utterances of;Hossa;Archives Acoustics,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3