Evaluation of the Technical Condition of the Active Part of the High Power Transformer Based on Measurements and Analysis of Vibroacoustic Signals

Author:

Borucki Sebastian,Cichoń Andrzej,Majchrzak Henryk,Zmarzły Dariusz

Abstract

Abstract This article presents the results of research connected with the development and industrial use of vibroacoustic methods for the evaluation of the technical condition of the active part of transformers. The article presents the results of the analysis of vibrations generated by the high power transformer in which a defect was found on the basis of tests of oil carried out using the chromatography tests. In order to confirm the damage of the active part of this transformer, vibroacoustic measurements were performed in three states of its operation. The measurement using the classical vibroacoustic method included the registration of vibrations at the idle speed and during the load operation of the transformer. The original diagnostic method, so-called the modified vibroacoustic method, was also used during the measurement. The analysis of signals recorded using the classical vibroacoustic method was carried out in the frequency domain by indicating the amplitude of even harmonic vibrations. However, the analysis of signals measured during the commissioning of the transformer was conducted in the time-frequency domain using the short-time Fourier transform (STFT), continuous wavelet transform (CWT), and discrete wavelet transform (DWT). On the basis of the analysis of the results obtained it was stated that the increased level of vibrations of this transformer is a consequence of the loss of rigidity of the mechanical structure of its core.

Publisher

Walter de Gruyter GmbH

Subject

Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3