L 1 and L ∞ stability of transition densities of perturbed diffusions

Author:

Bitter Ilya1ORCID,Konakov Valentin1ORCID

Affiliation:

1. Laboratory of Stochastic Analysis , HSE University , Pokrovsky Blvd, 11 , Moscow , Russia

Abstract

Abstract In this paper, we derive a stability result for L 1 {L_{1}} and L {L_{\infty}} perturbations of diffusions under weak regularity conditions on the coefficients. In particular, the drift terms we consider can be unbounded with at most linear growth, and the estimates reflect the transport of the initial condition by the unbounded drift through the corresponding flow. Our approach is based on the study of the distance in L 1 {L_{1}} - L 1 {L_{1}} metric between the transition densities of a given diffusion and the perturbed one using the McKean–Singer parametrix expansion. In the second part, we generalize the well-known result on the stability of diffusions with bounded coefficients to the case of at most linearly growing drift.

Publisher

Walter de Gruyter GmbH

Subject

Statistics and Probability,Analysis

Reference24 articles.

1. F. Anceschi, S. Muzzioli and S. Polidoro, Existence of a fundamental solution of partial differential equations associated to Asian options, Nonlinear Anal. Real World Appl. 62 (2021), Paper No. 103373.

2. D. G. Aronson, The fundamental solution of a linear parabolic equation containing a small parameter, Illinois J. Math. 3 (1959), 580–619.

3. D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890–896.

4. R. F. Bass, Diffusions and Elliptic Operators, Springer, New York, 1997.

5. O. Bencheikh and B. Jourdain, Convergence in total variation of the Euler–Maruyama. Scheme applied to diffusion processes with measurable drift coefficient and additive noise, preprint (2020), https://arxiv.org/abs/2005.09354.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient method to simulate diffusion bridges;Statistics and Computing;2024-06-12

2. An Efficient method to Simulate Diffusion Bridges;SSRN Electronic Journal;2024

3. Stability estimates for singular SDEs and applications;Electronic Journal of Probability;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3