Le Cam–Stratonovich–Boole theory for Itô diffusions

Author:

Bishwal Jaya P. N.1

Affiliation:

1. Department of Mathematics and Statistics , University of North Carolina at Charlotte , 376 Fretwell Bldg, 9201 University City Blvd , Charlotte , NC 28223-0001 , USA

Abstract

Abstract We connect the theory of local asymptotic normality (LAN) of Le Cam to Boole’s approximation of the Stratonovich stochastic integral by estimating the parameter in the nonlinear drift coefficient of an ergodic diffusion process satisfying a homogeneous Itô stochastic differential equation based on discretely spaced dense observations of the process. The asymptotic normality and local asymptotic minimaxity (in the Hajek–Le Cam sense) of approximate maximum likelihood estimators, approximate maximum probability estimators and approximate Bayes estimators based on Itô and Boole’s approximations of the continuous likelihood are obtained under an almost slowly increasing experimental design (ASIED) condition ( T n 6 / 7 0 {\frac{T}{n^{6/7}}\to 0} as T {T\to\infty} and n {n\to\infty} , where T is the length of the observation time and n is the number of observations) through the weak convergence of the approximate likelihood ratio random fields. Among other things, the Bernstein–von Mises type theorems concerning the convergence of suitably normalized and centered approximate posterior distributions to normal distribution under the same design condition are proved. Asymptotic normality and asymptotic efficiency of the conditional least squares estimator under the same design condition are obtained as a by-product. The log-likelihood derivatives based on Itô approximations are martingales, but the log-likelihood derivatives based on Boole’s approximations are not martingales but weighted averages of forward and backward martingales. These new approximations have faster rate of convergence than the martingale approximations. The methods would have advantages over Euler and Milstein approximations for Monte Carlo simulations.

Publisher

Walter de Gruyter GmbH

Subject

Statistics and Probability,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3